RADIALL

DPDT Coaxial Switches DC to 6 GHz , DC to 20 GHz , DC to 26.5 GHz , DC to 40 GHz

Radiall's PLATINUM SERIES switches are optimised to perform at a high level over an extended life span. With outstanding RF performances, and a guaranteed Insertion Loss repeatability of 0.03 dB over a life span of 10 million switching cycles. PLATINUM SERIES switches are perfect for automated test and measurement equipment, as well as signal monitoring devices.

PART NUMBER SELECTION


```
TTL Option :
1: With TTL driver (high level)
```

PICTURE

Note (2) :Connector SMA 2.9 is equivalent too "K connector®" $\mathbb{R}^{\Omega} \cdot$ Renistered trademark of AnritsıI

\section*{| RADIALL | TECHNICAL DATA SHEET | R 593 |
| :--- | :--- | :--- |
 HIGH PERFORMANCE TRANSFER SWITCHES}

RF PERFORMANCES

PART NUMBER	R59337314-	R59347314-	R593F7314-	R59387314-
Frequency Range GHz	DC to 6	DC to 20	DC to 26.5	DC to 40
Impedance Ohms	50			
Insertion Loss dB (Maximum)	$0.2+0.025 \times$ frequency (GHz)			
Isolation dB (Minimum)	100	DC to 6 GHz $:$ 100 6 to 12.4 GHz $:$ 90 12.4 to 20 GHz $:$ 80	DC to 6 GHz $:$ 6 to $12.4 \mathrm{GHz}:$ 90 12.4 to $20 \mathrm{GHz}:$ 80 20 to $26.5 \mathrm{GHz}:$ 65	DC to $6 \mathrm{GHz}:$ 100 6 to $12.4 \mathrm{GHz}:$ 90 12.4 to $20 \mathrm{GHz}:$ 80 20 to $26.5 \mathrm{GHz}:$ 65 26.5 to $40 \mathrm{GHz}:$ 60
V.S.W.R. (Maximum)	1.20	DC to 6 GHz $:$ 1.20 6 to 12.4 GHz $:$ 1.25 12.4 to 18 GHz $:$ 1.40 18 to 20 GHz $:$ 1.65	DC to $6 \mathrm{GHz}:$ 1.20 6 to $12.4 \mathrm{GHz}:$ 1.25 12.4 to $18 \mathrm{GHz}:$ 1.40 18 to $26.5 \mathrm{GHz}:$ 1.65	DC to $6 \mathrm{GHz}:$ 1.20 6 to $12.4 \mathrm{GHz}:$ 1.25 12.4 to $18 \mathrm{GHz}:$ 1.40 18 to $26.5 \mathrm{GHz}:$ 1.65 26.5 to $40 \mathrm{GHz}:$ 1.70
Repeatability (measured at $25^{\circ} \mathrm{C}$)		0.03 dB		0.05 dB

TYPICAL RF PERFORMANCES

In the continual goal to improve our products, we reserve the right to make any modification judged necessary

RADIALLS TECHNICAL DATA SHEET \quad R 593 HIGH PERFORMANCE TRANSFER SWITCHES

ADDITIONAL SPECIFICATIONS

Operating mode		Latching	
Nominal operating voltage (across operating temperature) Vdc		$24(20 / 32)$	
Coil resistance (+/-10\%) Ohms		120	
Nominal operating current at $23^{\circ} \mathrm{C}$ mA		200	
Maximum stand-by current mA		50	
Average power		RF path Cold switching : see Power Rating Chart on page 6 Hot switching : 1 Watt CW	
TTL input	High Level	3 to 7 V	1.4 mA max at 7 V
	Low Level	0 to 0.8 V	
Indicator specifications		Maximum withstanding voltage $:$ 60 V Maximum current capacity $:$ 150 mA Maximum « ON » resistance $:$ 2.5Ω Minimum « OFF » resistance $:$ $100 \mathrm{M} \Omega$	
Switching time (max) ms		15	
Life (min) for	SMA	10 million cycles	
	SMA 2.9	5 million cycles	
Connectors		SMA - SMA 2.9	
Actuator terminal		HE10 ribbon receptacle	
Weight (max) g		110	

ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	${ }^{\circ} \mathrm{C}$
Storage temperature range	${ }^{\circ} \mathrm{C}$
Temperature cycling (MIL-STD-202, Method 107D , Cond.A)	${ }^{\circ} \mathrm{C}$
Vibration (MIL STD 202, Method 204D , Cond.D)	-55 to +85
Shock (MIL STD 202, Method 213B , Cond.C)	-55 to +85 (10 cycles)
Moisture resistance (MIL STD 202, Method 106E , Cond.E)	$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$
Altitude storage (MIL STD 202, Method 105C , Cond.B)	$50 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine \quad operating
RFI (MIL STD 1344, Method 3008 or IEC 61726)	$65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 10$ days

In the continual goal to improve our products, we reserve the right to make any modification judged necessary

RADIALLS

DRIVING THE SWITCH

There is two positions for a transfer switch. Each RF path can be closed by applying Ground or TTL "High" to the corresponding "drive" pin.

Switch oannectar

Mating oable oonnector

SCHEMATIC DIAGRAM

Standard drive

- Connect pin 9 to ground (See note 1).
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF paths by applying Ground to the corresponding "drive" pin (Ex: apply Ground to pin 3 to close RF path 1-2 and 3-4).
- To select the second path, ensure that unwanted RF path "drive" pin are disconnected from Ground. Apply Ground to the "drive" pin which corresponds to the desired RF paths (Ex: apply Ground to pin 5 to close RF path 1-3 and 2-4).

TTL drive (Dual line)

- Connect pin 9 to ground.
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying TTL "High " to the corresponding "drive" pin (Ex: apply TTL "High" to pin 7 and TTL "Low" to pin 8 to close RF paths position 1).
- To select the second path, ensure that unwanted RF path "drive" pins are in TTL "Low" position. Apply TTL "High" to the "drive" pin which correspond to the desired RF path and TTL "low" to the undesired. (Ex: apply TTL "High" to pin 8 and TTL "Low" to pin 7 to close RF paths position 2).

TTL drive (Single line)

- Connect pin 9 to ground.
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Connect pin 8 to TTL "High".
- Select (close) position 1 by applying TTL "High " to pin 7 (Ex: apply TTL "High" to pin 7 to close RF paths 1-2 and 3-4).
- Select position 2 by applying TTL "Low " to pin 7 (Ex: apply TTL "Low" to pin 7 to close RF paths 1-3 and 2-4).

Note 1

Pin 9 does not need to be grounded for the switch to operate in standard drive. If pin 9 is not grounded, the position indicators will only function while the appropriate drive has applied. Therefore, if a pulse drive is used and continuous indicator operation is required, pin 9 must be grounded.

\section*{| RADIALL | TECHNICAL DATA SHEET | R 593 |
| :--- | :--- | :--- |
 HIGH PERFORMANCE TRANSFER SWITCHES}

ELECTRONIC POSITION INDICATORS

Pin number Function

2 Indicator Common

4 Indicator Position '1'

6 Indicator Position '2'

The electronic position indicators utilise photo-MOS transistors which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to selected RF path. The photo-MOS transistors are configured for AC and/or DC operation. The electronic position indicators require the supply (20 to 32 VDC) to be connected to pin 1 and ground connected to pin 9.

TYPICAL OUTLINE DRAWING

All dimensions are in millimetres/ inches.

Connectors	SMA	SMA 2.9
$\boldsymbol{A} \max (\mathrm{mm})$	7.4	6.3

In the continual goal to improve our products, we reserve the right to make any modification judged necessary

\section*{| RADIALL | TECHNICAL DATA SHEET | $\mathbf{R} 593$ |
| :--- | :--- | :--- |}

POWER RATING CHART

This graph is based on the following conditions :

- Ambient temperature : $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R. : 1 and cold switching

DERATING FACTOR VERSUS V.S.W.R.

The average power input must be reduced for load V.S.W.R. above 1.

